Linear Trigonometric Equations

These notes are intended as a supplement of section 7.1 and 7.2 (p. 572 - 600) in your workbook. You should also read the section for more complete explanations and additional examples.

Trigonometric Equations

A trigonometric equation is any equation that contains a trigonometric function. For example:

$$2\cos x + 1 = 0$$
$$4\cos x + 3 = 7\cos x + \sqrt{2}\sin x - 3 = -2$$

2

Trigonometric equations are solved in virtually the same manner as any other equation. The trigonometric function is treated like a variable (like x or y) until it is isolated. Then, x can be solved for using the inverse trigonometric functions (as was done in chapter 6).

Note: When solving trigonometric equations, you should find exact values whenever possible.

Solving Linear Trigonometric Equations

Solve the following linear equation for *x*:

5x + 7 = 3x + 8

Now solve the following linear trigonometric equation for *x*, where $0 \le x \le 2\pi$:

 $5\sin x + 7 = 3\sin x + 8$

Notice that the procedure is the same until the final step. Let's try a few more examples.

Example 1

Solve the equation $\sin x - 1 = 0$ for all values of x in the interval $0 \le x \le 2\pi$.

Example 2

Solve the equation $2\cos x + \sqrt{3} = 0$ for all values of x in the interval $0 \le x \le 2\pi$.

Example 3

Solve the equation $\frac{\sec x}{2} + 1 = 0$ for all values of x in the interval $0 \le x \le 2\pi$.

Example 4

Solve the equation $5 + 3\sin x = 6$ for all values of x in the interval $0 \le x \le 2\pi$.

Example 5 Solve the equation $3\cot x + 5 = -7$ for all values of x in the interval $0 \le x \le 2\pi$.

Homework: Supplemental Worksheet #2

Supplemental Worksheet #2

- 1. Solve the following equations over the interval $0^\circ \le x \le 360^\circ$.
 - a) $2\cos x = 2$
 - b) $5\tan x + 4 = 0$
 - c) $4\tan x 7 = 5\tan x 6$
- 2. Solve the following equations over the interval $0 \le x \le 2\pi$.
 - a) $\tan x + \sqrt{3} = 0$ b) $2\tan x + 2\sqrt{3} = 0$
 - c) $2\cos x + \sqrt{3} = 0$
- 3. Solve the equation $2\sin x + \sqrt{2} = 0$ over the interval $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$.
- 4. Determine the exact value for the expression $\sin \frac{2\pi}{3} \cdot \cos \frac{7\pi}{6} \cdot \tan \left(\frac{-3\pi}{4} \right)$.
- 5. Given $P(27\pi)$ is a point on the unit circle, find the quadrant and the coordinates of the point *P*.
- 6. If P(x) lies on the line segment joining the origin and the point (-6, -8) find $\cos x$.