Linear Trigonometric Equations

These notes are intended as a supplement of section 7.1 and 7.2 (p. $572-600$) in your workbook. You should also read the section for more complete explanations and additional examples.

Trigonometric Equations

A trigonometric equation is any equation that contains a trigonometric function. For example:

$$
\begin{aligned}
& 2 \cos x+1=0 \\
& 4 \cos x+3=7 \cos x+2 \\
& \sqrt{2} \sin x-3=-2
\end{aligned}
$$

Trigonometric equations are solved in virtually the same manner as any other equation. The trigonometric function is treated like a variable (like x or y) until it is isolated. Then, x can be solved for using the inverse trigonometric functions (as was done in chapter 6).

Note: When solving trigonometric equations, you should find exact values whenever possible.

Solving Linear Trigonometric Equations

Solve the following linear equation for x :

$$
5 x+7=3 x+8
$$

Now solve the following linear trigonometric equation for x, where $0 \leq x \leq 2 \pi$:

$$
5 \sin x+7=3 \sin x+8
$$

Notice that the procedure is the same until the final step. Let's try a few more examples.

Example 1

Solve the equation $\sin x-1=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 2

Solve the equation $2 \cos x+\sqrt{3}=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 3

Solve the equation $\frac{\sec x}{2}+1=0$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 4

Solve the equation $5+3 \sin x=6$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Example 5

Solve the equation $3 \cot x+5=-7$ for all values of x in the interval $0 \leq x \leq 2 \pi$.

Supplemental Worksheet \#2

1. Solve the following equations over the interval $0^{\circ} \leq x \leq 360^{\circ}$.
a) $2 \cos x=2$
b) $5 \tan x+4=0$
c) $4 \tan x-7=5 \tan x-6$
2. Solve the following equations over the interval $0 \leq x \leq 2 \pi$.
a) $\tan x+\sqrt{3}=0$
b) $2 \tan x+2 \sqrt{3}=0$
c) $2 \cos x+\sqrt{3}=0$
3. Solve the equation $2 \sin x+\sqrt{2}=0$ over the interval $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$.
4. Determine the exact value for the expression $\sin \frac{2 \pi}{3} \cdot \cos \frac{7 \pi}{6} \cdot \tan \left(\frac{-3 \pi}{4}\right)$.
5. Given $P(27 \pi)$ is a point on the unit circle, find the quadrant and the coordinates of the point P.
6. If $P(x)$ lies on the line segment joining the origin and the point $(-6,-8)$ find $\cos x$.
